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Abstract

This paper presents LEM - Long Elements Method, a new approach for physically based simulation of deformable

objects, suitable for real time animation and haptic interaction. The method implements a static solution for

elastic global deformations of objects �lled with uid based on the Pascal's principle and volume conservation.

The physics of the objects are modeled using bulk variables: pressure, density, volume and stress. The volumes

are discretised in long elements. This discretisation has two main advantages: the number of elements used to �ll

an object is one order of magnitude less than in a discretisation based on tetrahedric or cubic elements; the graphic

and the haptic feedback can be directly derived from the elements, and no intermediate geometric representation

is needed. The use of static instead of PDE equations avoids all the problems concerning numerical integration,

ensuring stability for the simulation and for the haptic rendering.

1 Introduction

The method proposed in this paper was conceived for soft tissue real time simulation, particularly for surgical
simulation. The priorities in this kind of application are: unrestricted multi-modal interactiveness, including
interactive topological changes (cutting, suturing, removing material, etc), physically based behavior, volumetric
modeling (homogeneous and non-homogeneous materials) and scalability (high accuracy when needed).

The approach is based on a static solution for elastic deformations of objects �lled with uncompressible uid,
which is a good approximation for biological tissues. The volumes are discretised in a set of Long Elements (LE),
and an equilibrium equation is de�ned for each element using bulk variables. The set of static equations, plus
the Pascal's principle and the volume conservation, are used to de�ne a system that is solved to �nd the object
deformations and forces. Global and physically consistent deformations are obtained (Fig. 1).

Figure 1: Soft-tissue touched by a rigid probe

For a survey of deformable modeling in computer graphics the reader is referred to [1]. Others recent methods
proposed are the "Geometric Nonlinear �nite element method" [3], the "Boundary Element Method" [2] and some
medical simulators [4], [5], [6].
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2 Method Formulation

2.1 Pressure and Stress

Figure 2: Long element

Consider the long elastic element illustrated in �gure 2. The force F per unit of area A is de�ned as pressure:
P = F=A. However the force per area unit producing the deformation is also the stress. For small applied forces,
the stress s in a material is usually linearly related to its deformation (its change in length in our long elastic
object). De�ning elasticity E as the variable relating stress and the fractional change in length: �L=L, it is
possible to write: s = E�L=L. Since the stress is related to the fractional change in length, the force can be
related to the elongation �L in the well known form:

F = K�L where K = AE=L: (1)

Note that K is not constant, but it depends on the length L.

2.2 Static Solution

The static condition states that the forces, or pressures, in one sense have a correspondent of the same magnitude
in the contrary sense on each point of the surface of the object , or: Pint = Pext. The external pressure Pext on
the surface is a�ected by the atmospheric pressure and by the stress when an elongation exists, so:

Pext = Patm +E�L=L: (2)

The surface tension also a�ects the external pressure, as described further in section 2.4.
Considering that the object is �lled by uid, the internal pressure (Pint) is formed by the pressure of the uid

(without gravity) and the e�ect of the gravity acceleration (g), so:

Pint = Pfluid + dgh (3)

where h is the distance between the upper part of the uid and the point where the pressure is calculated. From
the last three equations, a continuous equation can be obtained as:

E�L=L��P = dgh (4)

where �P = Pfluid � Patm.
Another external pressure to be considered comes from contacts between the object and its environment. At

the points on the object surface, where are some external contacts, a term is added to the right side of equation 2.
To obey the action-reaction law, the force applied to the external contact and to the object must to have the same
magnitude. It means that the external pressure applied by the contact must be equal to �P . The elongation �L
is de�ned by the penetration of the contact in order to make the surface follow the contact position (y). With
these considerations, the equation 4 can be rewritten for the elements where there is external contact as:

�L = y: (5)

2.3 Long Elements

To simulate a deformable object we propose a discretisation of its volume in a set of long elements (Fig. 2).
The idea is to �ll the volume with long elements, to de�ne equilibrium equations for each element based on the
stated principles and to add global constraints in order to obtain a global physical behavior. A long element
can be compared to a spring �xed in one extremity and having the other extremity attached to a point in the
movable object surface. Di�erent meshing strategies can be conceived to �ll the objects. Applying the continuous
equations (eqs. 4 and 5) for each of this elements we obtain:

Ei:�Li=Li ��Pi = digi:hi (6)



for the untouched elements. For the touched elements we obtain:

�Li = yi (7)

To make the connection between the elements two border conditions are applied:

1. Pascal's principle says that an external pressure applied to a uid con�ned within a closed container is

transmitted undiminished throughout the entire uid. Mathematically:

�Pi = �Pj for any i and j. (8)

The �rst equation of this section (eq. 6) can then be written without the index i in the term �Pi.

2. The uid is considered incompressible. It means that the volume conservation must be guaranteed when
there is some external contact to the object. The volume dislocated by the contact will cause the dislocation
of the entire surface, or in other words, the variation of volume due to the elements touched by the contact
have to be equal to the sum of the volume created by the dislocation of all untouched elements to ensure
the volume conservation:

NX

i=1

Ai�Li = 0 (9)

where N is the total number of elements.

2.4 Surface Tension

To reproduce the surface tension forces a number of terms will be added to the right side of the equation 2
corresponding to the neighborhood considered around the element. These terms are of the form P = FA = kxA,
where x is the di�erence between the deformations of an element and its neighbor and k is a local spring constant.
For a given element i the term relating its deformation to the deformation of its neighbor j is:

kj(�Li ��Lj)Ai (10)

3 Mathematical Solution

Equations 6, 8 and 10 de�ne the �nal equation for the untouched elements (considering 4 neighbors):

(Ei=Li + 4kA)�Li � kA(�Li�1 +�Li+1 +�Lj +�Ll)��P = digi:hi (11)

where k and A were done constant for all elements to make easier the notation.
The untouched elements (equation 11) plus the elements in contact with the environment (equation 5) de�ne

a set of N equations, where N is the number of elements used to �ll the object. Adding the equation of volume
conservation (eq. 9) we have N + 1 equations and N + 1 unknowns: the pressure (�P ) and the deformation of
each element (�Li for i = 1 to N).These N + 1 equations can be written as a problem of the type A:x = B.

4 Method Implementation

The described method was used to implement a generic soft tissue VR simulator. The simulator was implemented
in C++ in a Windows NT platform. This �rst prototype simulates deformations of a compliant object contacted
by a rigid probe.

4.1 System organization

The system is organized around three decoupled main loops, executed concurrently in di�erent processing units
(threads, process and/or machines). The �rst loop simulates the deformations, the second renders the graphics
and the third renders the haptics. The main loops share the data structure containing the long elements.

The objects are discretised in Cartesian meshes, each mesh containing long elements parallel to one axis of the
reference frame. A Cartesian mesh de�nes a grid of parallel elements crossing the object. Each element starts in
a point of the surface and crosses the volume until the end of the material, de�ning a line segment parallel to one
of the reference frame axis.



Simulation loop The iterative biconjugate gradient method [7] is used to solve the system of equations de�ned
in section 3. The static equations system does not demand any particular concern about time steps, sti�ness or
stability. The matrix is dynamically de�ned and the system A:x = B can be rapidly solved. The solution (x) is
the surface deformation, de�ned by a set of length di�erences in each element, and the di�erence in pressure.

Graphic loop OpenGL and GLUT are used to render the 3D volumes. There is no explicit geometric model of
the object surface. In order to draw the object we use vertices directly derived from the long elements extremities
and polygons de�ned between neighbor elements.

Haptic loop The LE representation of a volume is excellent for haptic rendering. The one point collision
detection between the haptic probe position and the volume can be easily done using directly the LE cartesian
meshes. Each mesh de�nes a grid, or a space �lling map, and the collision detection in one mesh consists in
checking the grid position corresponding to the probe position to see if the probe is penetrating a LE. Each mesh
being parallel to one axis of the reference frame, the force feedback estimation is naturally decomposed. Each
component of the force vector is independently estimated using the corresponding LE mesh.

During the collision two forces are been applied by the object to the haptic probe: a force applied by the
touched elements (eq. 1) on the direction of the element and a force applied by the uid inside the object (eq.
12). Multiplying both sides of equation 4 by the contact area Ac and comparing to equations 1 we obtain:

F = �P:Ac + dgh:Ac (12)

This force is perpendicular to the object surface and depends on the internal pressure, not on the penetration.

4.2 Results

In a standard dual 700MHz PC one iteration of the simulation loop takes about 0.05 seconds for a 600 elements
mesh. The haptic interface was implemented using a PHANTOM haptic device (http://www.sensable.com). See
�gs. 1 and 3 for some examples of deformation. The global deformations are physically consistent and important
phenomena such as the movement of all parts of the solid due to the preservation of volume are automatically
produced.

Figure 3: Soft sphere touched by a rigid probe

5 Conclusions

Utilizing the LE method have been able to physically model elastic deformations in a way that preserves volume,
permits real time topology changes and is rapidly computable. The discretisation adopted by the method has
two main advantages: the number of elements used to �ll an object is one order of magnitude less than in a
discretisation based on tetrahedric or cubic elements; the graphic and the haptic feedback can be directly derived
from the elements, and no intermediate geometric representation is needed. The use of static instead of PDE
equations avoids all the problems concerning numerical integration, ensuring stability for the simulation. No
pre-calculations or condensations are used, in order to enable real time topology changes.
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